

Hawkmoth – Sphinx Autodoc for C and C++

Hawkmoth is a Sphinx [https://www.sphinx-doc.org] extension to incorporate C and C++ source code comments
formatted in reStructuredText [https://docutils.sourceforge.io/rst.html] into Sphinx based documentation. It uses Clang [https://clang.llvm.org/]
Python Bindings for parsing, and generates C [https://www.sphinx-doc.org/en/master/usage/domains/c.html] and C++ [https://www.sphinx-doc.org/en/master/usage/domains/cpp.html] domain
directives for C and C++ documentation, respectively. In short, Hawkmoth is
Sphinx Autodoc for C/C++.

Hawkmoth aims to be a compelling alternative for documenting C and C++ projects
using Sphinx, mainly through its simplicity of design, implementation and use.

Note

The C++ support is still in early stages of development, and lacks some
fundamental features such as handling namespaces and documenting C++ specific
features other than classes.

Please see the Hawkmoth project GitHub page [https://github.com/jnikula/hawkmoth] (or README.rst in the source
repository) for information on how to obtain, install, and contribute to
Hawkmoth, as well as how to contact the developers.

Read on for information about Hawkmoth installation details and usage; how to
configure and use the extension and how to write documentation comments, with
examples.

Contents:

	Introduction

	Installation
	Clang Distro Install

	Clang Python Bindings

	Virtual Environment

	Read the Docs

	Autodoc Extension
	Usage

	Configuration

	Directives
	Source Files

	Variables, Types, Macros, and Functions

	Structures, Classes, Unions, and Enumerations

	Generic Documentation Sections

	Syntax
	Documentation Comments

	Info Field Lists

	Extending the Syntax

	Cross-Referencing C and C++ Constructs

	Examples
	Overview

	Variable

	Typedef

	Macro

	Function

	Struct

	Class

	Union

	Enum

	Generic Documentation Section

	Preprocessor

	Napoleon-style comments

	Javadoc/Doxygen-style comments

	Extending
	Events

	Built-In Extensions
	hawkmoth.ext.javadoc

	hawkmoth.ext.napoleon

	hawkmoth.ext.transformations

	Tips and Tricks
	Function Parameter Direction

	Including Source Code Blocks

	Using sphinx-autobuild with Hawkmoth

	Troubleshooting
	Use the parser directly

	Get verbose output from Sphinx

Indices and tables

	Index

	Search Page

Installation

You can install the Hawkmoth Python package and most of its dependencies from
PyPI [https://pypi.org/project/hawkmoth/] with:

pip install hawkmoth

However, you’ll also need to install Clang and Clang Python Bindings through
your distro’s package manager; they are not available via PyPI. This is
typically the biggest hurdle in getting your Hawkmoth setup to work.

Clang Distro Install

This step is necessarily distro specific.

For example, in recent Debian and Ubuntu:

apt install python3-clang

Clang Python Bindings

There are unofficial Clang Python Bindings available in PyPI. They may be
helpful in some scenarios, but they will not include the binary libclang,
and the provided Python Bindings might not be compatible with the library
provided in your system. It’s recommended to use the bindings from the distro,
but if you need to install the clang package from PyPI, it’s recommended to
use the same major varsion for both system libclang and Python clang.

If the Clang Python Bindings are unable to find libclang, for whatever
reason, there are some tricks to try:

	Set the library path in shell:

export LD_LIBRARY_PATH=$(llvm-config --libdir)

	Set the library path in conf.py:

from clang.cindex import Config
Config.set_library_path('/path/to/clang')

	Set the library name in conf.py, possibly combined with
LD_LIBRARY_PATH:

from clang.cindex import Config
Config.set_library_file('libclang.so')

	Set the library name with full path in conf.py:

from clang.cindex import Config
Config.set_library_file('/path/to/clang/libclang.so')

Virtual Environment

If you’re installing Hawkmoth in a Python virtual environment, use the
--system-site-packages option when creating the virtual environment to make
the distro Clang package available to the virtual environment. For example:

python3 -m venv --system-site-packages .venv

Read the Docs

It’s possible to set up Hawkmoth based documentation on Read the Docs [https://readthedocs.org/]
(RTD). Use the .readthedocs.yaml configuration file [https://docs.readthedocs.io/en/stable/config-file/v2.html] to install system
libclang and specify a Python requirements.txt file:

build:
 os: ubuntu-22.04
 tools:
 python: "3.11"
 apt_packages:
 - libclang-14-dev

python:
 install:
 - requirements: requirements.txt

In the requirements.txt file, specify the dependencies:

clang==14.0.6
hawkmoth==0.14.0

To ensure the system libclang and Python clang compatibility, it’s
recommended to specify matching major versions. RTD also recommends pinning all
the versions to avoid unexpected build errors.

If the Clang Python Bindings fail to find libclang automatically, try adding
this snippet to your conf.py:

from hawkmoth.util import readthedocs

readthedocs.clang_setup()

This will try to find libclang on RTD, and configure Clang Python Bindings
to use it.

Autodoc Extension

Hawkmoth provides a Sphinx extension that adds new directives to the Sphinx C [https://www.sphinx-doc.org/en/master/usage/domains/c.html] and
C++ [https://www.sphinx-doc.org/en/master/usage/domains/cpp.html] domains to incorporate formatted
C and C++ source code comments into a document. Hawkmoth is Sphinx
sphinx.ext.autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#module-sphinx.ext.autodoc] for C/C++.

For this to work, the documentation comments must of course be written in
correct reStructuredText. See documentation comment syntax for
details.

Hawkmoth itself is extensible, and ships with some
built-in extensions.

Usage

Add hawkmoth to extensions [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-extensions] in conf.py. Note
that depending on the packaging and installation directory, this may require
adjusting the PYTHONPATH [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH].

For example:

extensions.append('hawkmoth')

Configuration

The extension has a few configuration options that can be set in conf.py.

See also additional configuration options in the built-in extensions.

	
hawkmoth_root: str [https://docs.python.org/3/library/stdtypes.html#str]

	Path to the root of the source files. Defaults to the
configuration directory [https://www.sphinx-doc.org/en/master/glossary.html#term-configuration-directory], i.e. the directory
containing conf.py.

To use paths relative to the configuration directory, use
os.path.abspath() [https://docs.python.org/3/library/os.path.html#os.path.abspath], for example:

import os
hawkmoth_root = os.path.abspath('my/sources/dir')

	
hawkmoth_transform_default: str [https://docs.python.org/3/library/stdtypes.html#str]

	The default transform parameter to be passed to the
hawkmoth-process-docstring event. It can be overriden with the
transform option of the directives. Defaults to
None.

	
hawkmoth_clang: list [https://docs.python.org/3/library/stdtypes.html#list]

	A list of arguments to pass to clang while parsing the source, typically
to add directories to include file search path, or to define macros for
conditional compilation. No arguments are passed by default.

Example:

hawkmoth_clang = ['-I/path/to/include', '-DHAWKMOTH']

Hawkmoth provides a convenience helper for querying the include path from the
compiler, and providing them as -I options:

from hawkmoth.util import compiler

hawkmoth_clang = compiler.get_include_args()

You can also pass in the compiler to use, for example
get_include_args('gcc').

	
hawkmoth_source_uri: str [https://docs.python.org/3/library/stdtypes.html#str]

	A template URI to source code. If set, add links to externally hosted source
code for each documented symbol, similar to the Sphinx
linkcode extension [https://www.sphinx-doc.org/en/master/usage/extensions/linkcode.html]. Defaults to None.

The template URI will be formatted using
str.format() [https://docs.python.org/3/library/stdtypes.html#str.format], with the following replacement fields:

	{source}
	Path to source file relative to hawkmoth_root.

	{line}
	Line number in source file.

Example:

hawkmoth_source_uri = 'https://example.org/src/{source}#L{line}'

	
cautodoc_root: str [https://docs.python.org/3/library/stdtypes.html#str]

	Equivalent to hawkmoth_root.

Warning

The cautodoc_root option has been deprecated in favour of the
hawkmoth_root option and will be removed in the future.

	
cautodoc_clang: str [https://docs.python.org/3/library/stdtypes.html#str]

	Equivalent to hawkmoth_clang.

Warning

The cautodoc_clang option has been deprecated in favour of
the hawkmoth_clang option and will be removed in the
future.

Directives

Hawkmoth provides several new directives for incorporating documentation
comments from C/C++ source files into the reStructuredText document.
There are three main types of directives, for incorporating documentation from
entire files, for single objects, and for composite objects optionally with
members.

Source Files

The c:autodoc and cpp:autodoc directives simply include
all the documentation comments from any number of files. This is the most basic
and quickest way to generate documentation, but offers no control over what gets
included.

	
.. c:autodoc:: filename-pattern [...]

	

	
.. cpp:autodoc:: filename-pattern [...]

	Incorporate documentation comments from the files specified by the space
separated list of filename patterns given as arguments. The patterns are
interpreted relative to the hawkmoth_root configuration option.

	
:transform: (text)

	Override hawkmoth_transform_default for the transform
parameter value of the hawkmoth-process-docstring event.

See also hawkmoth.ext.transformations.

	
:clang: (text)

	The clang option extends the hawkmoth_clang configuration
option.

For example:

.. c:autodoc:: interface.h

.. c:autodoc:: api/*.[ch] interface.h
 :clang: -DHAWKMOTH

Variables, Types, Macros, and Functions

The c:autovar, c:autotype, c:automacro, and
c:autofunction directives and their C++ domain counterparts
incorporate the documentation comment for the specified object in the specified
file.

The directives support all the same directive options as c:autodoc
and cpp:autodoc, adding the file option.

	
.. c:autovar:: name

	

	
.. cpp:autovar:: name

	Incorporate the documentation comment for the variable name.

If file is specified, look up name there, otherwise look up name
in all previously parsed files in the current document.

	
:file: (text)

	The file option specifies the file to look up name in. This is
required if the file has not been parsed yet, and to disambiguate if
name is found in multiple files.

The filename is interpreted relative to the hawkmoth_root
configuration option.

For example:

.. c:autovar:: example_variable
 :file: example_file.c

.. c:autovar:: another_variable

	
.. c:autotype:: name

	

	
.. cpp:autotype:: name

	Same as c:autovar but for typedefs.

.. c:autotype:: example_type_t
 :file: example_file.c

	
.. c:automacro:: name

	

	
.. cpp:automacro:: name

	Same as c:autovar but for macros, including function-like macros.

Note

The C++ Domain [https://www.sphinx-doc.org/en/master/usage/domains/cpp.html] does not have a
cpp:macro directive, so all macros are always in the
C Domain [https://www.sphinx-doc.org/en/master/usage/domains/c.html]. This affects
cross-referencing them; see Cross-Referencing C and C++ Constructs for details.

.. c:automacro:: EXAMPLE_MACRO
 :file: example_file.c

	
.. c:autofunction:: name

	

	
.. cpp:autofunction:: name

	Same as c:autovar but for functions. (Use c:automacro
for function-like macros.)

.. c:autofunction:: example_function
 :file: example_file.c

Structures, Classes, Unions, and Enumerations

The c:autostruct, c:autounion, and c:autoenum
directives, their C++ domain counterparts, and the cpp:autoclass
directive incorporate the documentation comments for the specified object in the
specified file, with additional control over the structure, class or union
members and enumeration constants to include.

The directives support all the same directive options as c:autodoc,
c:autovar, c:autotype, c:automacro, and
c:autofunction, adding the members option.

	
.. c:autostruct:: name

	

	
.. cpp:autostruct:: name

	Incorporate the documentation comment for the structure name, optionally
including member documentation as specified by members.

The file option is as in c:autovar. If file is specified,
look up name there, otherwise look up name in all previously parsed
files in the current document.

	
:members: (text)

	The members option specifies the struct members to include:

	If members is not present, do not include member documentation at
all.

	If members is specified without arguments, include all member
documentation recursively.

	If members is specified with a comma-separated list of arguments,
include all specified member documentation recursively.

For example:

.. c:autostruct:: example_struct
 :file: example_file.c

.. c:autostruct:: example_struct
 :members:

.. c:autostruct:: example_struct
 :members: member_one, member_two

	
.. cpp:autoclass:: name

	Same as cpp:autostruct but for classes.

For example:

.. cpp:autoclass:: example_class
 :file: example_file.cpp
 :members: member_one, member_two

	
.. c:autounion:: name

	

	
.. cpp:autounion:: name

	Same as c:autostruct but for unions.

.. c:autounion:: example_union
 :file: example_file.c
 :members: some_member

	
.. c:autoenum:: name

	

	
.. cpp:autoenum:: name

	Same as c:autostruct but for enums. The enumeration constants are
considered members and are included according to the members option.

.. c:autoenum:: example_enum
 :file: example_file.c
 :members:

.. c:autoenum:: example_enum
 :members: CONSTANT_ONE, CONSTANT_TWO

Generic Documentation Sections

The c:autosection and cpp:autosection directives
incorporate generic documentation comments not attached to any objects in the
specified file.

	
.. c:autosection:: name

	

	
.. cpp:autosection:: name

	Incorporate the generic documentation comment identified by name.

The name is derived from the first sentence of the comment, and may
contain whitespace. It starts from the first alphanumeric character,
inclusive, and extends to the next :, ., or newline, non-inclusive.

The file option is as in c:autovar. If file is specified,
look up name there, otherwise look up name in all previously parsed
files in the current document.

For example:

/**
 * This is the reference. This is not. It all becomes
 * the documentation comment.
 */

.. c:autosection:: This is the reference
 :file: example_file.c

Note that the above does not automatically create hyperlink targets that you
could reference from reStructuredText. However, reStructuredText hyperlink
targets work nicely as the reference name for the directive:

/**
 * .. _This is the reference:
 *
 * The actual documentation comment.
 *
 * You can use :ref:`This is the reference` to reference
 * this comment in reStructuredText.
 */

.. c:autosection:: This is the reference
 :file: example_file.c

Syntax

For the Hawkmoth autodoc directives to work, the C or C++
source code must be documented using specific documentation comment style, and
the comments must follow reStructuredText markup.

Optionally, the syntax may be extended to support
e.g. Javadoc/Doxygen and Napoleon style comments.

See the examples section for a quick tour of what’s possible,
and read on for documentation comment formatting details.

Documentation Comments

Documentation comments are C/C++ language block comments that begin with
/**.

Because reStructuredText is sensitive about indentation, it’s strongly
recommended, even if not strictly required, to follow a uniform style for
multi-line comments. Place the opening delimiter /** and closing delimiter
␣*/ on lines of their own, and prefix the lines in between with ␣*␣.
Indent the actual documentation at the third column, to let Hawkmoth
consistently remove the enclosing comment markers:

/**
 * The quick brown fox jumps
 * over the lazy dog.
 */

One-line comments are fine too:

/** The quick brown fox jumps over the lazy dog. */

All documentation comments preceding C or C++ constructs are attached to them,
and result in C or C++ Domain directives being added for them accordingly. This
includes macros, functions, struct and union members, enumerations, etc.

Documentation comments followed by comments (documentation or not) are included
as normal paragraphs in the order they appear.

Info Field Lists

Use reStructuredText field lists [https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#field-lists] for documenting function parameters, return
values, and arbitrary other data. Sphinx recognizes some
info fields [https://www.sphinx-doc.org/en/master/usage/domains/python.html#info-field-lists], such as param and return, and formats
them nicely.

/**
 * The baznicator.
 *
 * :param foo: The Foo parameter.
 * :param bar: The Bar parameter.
 * :return: 0 on success, non-zero error code on error.
 * :since: v0.1
 */
int baz(int foo, int bar);

Extending the Syntax

Hawkmoth supports extending the syntax using built-in and custom extensions that convert the comments to
reStructuredText.

The hawkmoth.ext.javadoc extension provides limited support for Javadoc [https://www.oracle.com/java/technologies/javase/javadoc.html]
and Doxygen [https://www.doxygen.nl/] style comments, and the hawkmoth.ext.napoleon extension
provides support for sphinx.ext.napoleon [https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#module-sphinx.ext.napoleon] style
comments.

Cross-Referencing C and C++ Constructs

Under the hood, the Hawkmoth directives generate
corresponding C [https://www.sphinx-doc.org/en/master/usage/domains/c.html] and
C++ [https://www.sphinx-doc.org/en/master/usage/domains/cpp.html] domain directives. For example,
c:autovar produces c:var [https://www.sphinx-doc.org/en/master/usage/domains/c.html#directive-c-var]. Use the Sphinx
C Domain Roles [https://www.sphinx-doc.org/en/master/usage/domains/c.html#c-roles] and C++
Domain Roles [https://www.sphinx-doc.org/en/master/usage/domains/cpp.html#cpp-roles] for cross-referencing accordingly.

For example:

	:c:var:`name` for variables.

	:c:func:`name` for functions and function-like macros.

	:cpp:class:`name` for classes.

	:c:member:`name.membername` for struct and union members.

The C++ Domain does not have a cpp:macro directive, however, so all macros
generate documentation using the C Domain c:macro [https://www.sphinx-doc.org/en/master/usage/domains/c.html#directive-c-macro]
directive. This also means macros have to be referenced using the
c:macro [https://www.sphinx-doc.org/en/master/usage/domains/c.html#role-c-macro] role, even when otherwise using C++ Domain
directives.

See the Sphinx Basic Markup [https://www.sphinx-doc.org/en/master/usage/domains/index.html#basic-domain-markup] and generic
Cross-referencing syntax [https://www.sphinx-doc.org/en/master/usage/referencing.html#xref-syntax] for further details on cross-referencing, and
how to specify the default domain for brevity.

Examples

This page showcases Hawkmoth in action.

The [source] links are optional, and can be enabled via the
hawkmoth_source_uri option.

	Overview

	Variable

	Typedef

	Macro

	Function

	Struct

	Class

	Union

	Enum

	Generic Documentation Section

	Preprocessor

	Napoleon-style comments

	Javadoc/Doxygen-style comments

Overview

Source

overview.c

/**
 * The ``c:autodoc`` directive is the easiest way to extract all the
 * documentation comments from one or more source files in one go. The
 * other directives provide more fine-grained control over what to
 * document.
 *
 * This example provides a brief overview of the most common features.
 *
 * Note that the documentation comments below are **not** good examples
 * of how to document your code. Instead, the comments primarily
 * describe the features of Hawkmoth and Sphinx.
 *
 * Source files may contain documentation comments not attached to any C
 * constructs. They will be included as generic documentation comments,
 * like this one.
 */

/**
 * Macro documentation.
 */
#define ERROR -1

/**
 * Struct documentation.
 */
struct foo {
	/**
	 * Member documentation.
	 */
	const char *m1;
	/**
	 * Member documentation.
	 */
	int m2;
};

/**
 * Enum documentation.
 */
enum bar {
	/**
	 * Enumeration constant documentation.
	 */
	E1,
	/**
	 * Enumeration constant documentation.
	 */
	E2,
};

/**
 * Function documentation.
 *
 * :param p1: Parameter documentation
 * :param int p2: Parameter documentation with type
 * :return: Return value documentation
 */
int baz(int p1, int p2);

Directive

.. c:autodoc:: overview.c

Output

The c:autodoc directive is the easiest way to extract all the
documentation comments from one or more source files in one go. The
other directives provide more fine-grained control over what to
document.

This example provides a brief overview of the most common features.

Note that the documentation comments below are not good examples
of how to document your code. Instead, the comments primarily
describe the features of Hawkmoth and Sphinx.

Source files may contain documentation comments not attached to any C
constructs. They will be included as generic documentation comments,
like this one.

	
ERROR
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L18]

	Macro documentation.

	
struct foo
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L23]

	Struct documentation.

	
const char *m1
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L27]

	Member documentation.

	
int m2
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L31]

	Member documentation.

	
enum bar
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L37]

	Enum documentation.

	
enumerator E1
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L41]

	Enumeration constant documentation.

	
enumerator E2
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L45]

	Enumeration constant documentation.

	
int baz(int p1, int p2)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/overview.c#L51]

	Function documentation.

	Parameters:

	
	p1 – Parameter documentation

	p2 (int) – Parameter documentation with type

	Returns:

	Return value documentation

Variable

Source

variable.c

/**
 * The name says it all.
 */
const int meaning_of_life = 42;

/**
 * The list of entries.
 *
 * Use :c:func:`frob` to frobnicate, always in :c:macro:`MODE_PRIMARY` mode.
 */
static struct list *entries;

/**
 * This is a sized array.
 */
const char array[10];

Directive

.. c:autodoc:: variable.c

Output

	
const int meaning_of_life
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/variable.c#L1]

	The name says it all.

	
static struct list *entries
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/variable.c#L6]

	The list of entries.

Use frob() to frobnicate, always in MODE_PRIMARY mode.

	
const char array[10]
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/variable.c#L13]

	This is a sized array.

Directive

.. c:autovar:: meaning_of_life
 :file: variable.c

Output

	
const int meaning_of_life
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/variable.c#L1]

	The name says it all.

Typedef

Source

typedef.c

/**
 * Typedef documentation.
 */
typedef void * list_data_t;

Directive

.. c:autotype:: list_data_t
 :file: typedef.c

Output

	
type list_data_t
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/typedef.c#L1]

	Typedef documentation.

Macro

Source

macro.c

/**
 * Failure status.
 */
#define FAILURE 13

/**
 * Terminate immediately with failure status.
 *
 * See :c:macro:`FAILURE`.
 */
#define DIE() _exit(FAILURE)

/**
 * Get the number of elements in an array.
 *
 * :param array: An array
 * :return: Array size
 */
#define ARRAY_SIZE(array) (sizeof(array) / sizeof(array[0]))

/**
 * Variadic macros
 *
 * :param foo: regular argument
 * :param ...: variable argument
 */
#define VARIADIC_MACRO(foo, ...) (__VA_ARGS__)

Directive

.. c:autodoc:: macro.c

Output

	
FAILURE
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/macro.c#L1]

	Failure status.

	
DIE()
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/macro.c#L6]

	Terminate immediately with failure status.

See FAILURE.

	
ARRAY_SIZE(array)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/macro.c#L13]

	Get the number of elements in an array.

	Parameters:

	
	array – An array

	Returns:

	Array size

	
VARIADIC_MACRO(foo, ...)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/macro.c#L21]

	Variadic macros

	Parameters:

	
	foo – regular argument

	... – variable argument

Directive

.. c:automacro:: DIE
 :file: macro.c

Output

	
DIE()
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/macro.c#L6]

	Terminate immediately with failure status.

See FAILURE.

Function

Source

function.c

struct list;
enum mode;

/**
 * List frobnicator.
 *
 * :param list: The list to frob.
 * :param mode: The frobnication mode.
 * :return: 0 on success, non-zero error code on error.
 * :since: v0.1
 */
int frob(struct list *list, enum mode mode);

/**
 * variadic frobnicator
 *
 * :param fmt: the format
 * :param ...: variadic
 */
int frobo(const char *fmt, ...);

Directive

.. c:autodoc:: function.c

Output

	
int frob(struct list *list, enum mode mode)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/function.c#L4]

	List frobnicator.

	Parameters:

	
	list – The list to frob.

	mode – The frobnication mode.

	Returns:

	0 on success, non-zero error code on error.

	Since:

	v0.1

	
int frobo(const char *fmt, ...)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/function.c#L14]

	variadic frobnicator

	Parameters:

	
	fmt – the format

	... – variadic

Directive

.. c:autofunction:: frob
 :file: function.c

Output

	
int frob(struct list *list, enum mode mode)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/function.c#L4]

	List frobnicator.

	Parameters:

	
	list – The list to frob.

	mode – The frobnication mode.

	Returns:

	0 on success, non-zero error code on error.

	Since:

	v0.1

Struct

Source

struct.c

/**
 * Linked list node.
 */
struct list {
	/** Next node. */
	struct list *next;

	/** Data. */
	int data;
};

Directive

.. c:autodoc:: struct.c

Output

	
struct list
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/struct.c#L1]

	Linked list node.

	
struct list *next
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/struct.c#L4]

	Next node.

	
int data
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/struct.c#L7]

	Data.

Directive

.. c:autostruct:: list
 :file: struct.c
 :members:

Output

	
struct list
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/struct.c#L1]

	Linked list node.

	
struct list *next
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/struct.c#L4]

	Next node.

	
int data
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/struct.c#L7]

	Data.

Class

Source

class.cpp

/**
 * Circle.
 */
class Circle {
private:
	/** Radius */
	int radius;

public:
	/** Constructor */
	Circle(int radius);

	/** Destructor */
	~Circle();

	/** Get the area. */
	virtual int area(void);
};

Directive

.. cpp:autoclass:: Circle
 :file: class.cpp
 :members:

Output

	
class Circle
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/class.cpp#L1]

	Circle.

	
private int radius
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/class.cpp#L5]

	Radius

	
Circle(int radius)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/class.cpp#L9]

	Constructor

	
~Circle(void)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/class.cpp#L12]

	Destructor

	
virtual int area(void)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/class.cpp#L15]

	Get the area.

Union

Source

union.c

/**
 * Onion documentation.
 */
union onion {
	/**
	 * Yellow onion.
	 */
	int yellow;
	/**
	 * Red onion.
	 */
	int red;
	/**
	 * White onion.
	 */
	int white;
};

Directive

.. c:autounion:: onion
 :file: union.c
 :members:

Output

	
union onion
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/union.c#L1]

	Onion documentation.

	
int yellow
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/union.c#L5]

	Yellow onion.

	
int red
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/union.c#L9]

	Red onion.

	
int white
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/union.c#L13]

	White onion.

Enum

Source

enum.c

/**
 * Frobnication modes for :c:func:`frob`.
 */
enum mode {
	/**
	 * The primary frobnication mode.
	 */
	MODE_PRIMARY,
	/**
	 * The secondary frobnication mode.
	 *
	 * If the enumerator is initialized in source, its value will also be
	 * included in documentation.
	 */
	MODE_SECONDARY = 2,
};

Directive

.. c:autoenum:: mode
 :file: enum.c
 :members:

Output

	
enum mode
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/enum.c#L1]

	Frobnication modes for frob().

	
enumerator MODE_PRIMARY
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/enum.c#L5]

	The primary frobnication mode.

	
enumerator MODE_SECONDARY = 2
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/enum.c#L9]

	The secondary frobnication mode.

If the enumerator is initialized in source, its value will also be
included in documentation.

Generic Documentation Section

Source

autosection.c

/**
 * .. _Hyperlink Target:
 *
 * This is a generic documentation comment.
 *
 * Because generic documentation comments aren't attached to any symbols, the
 * comment itself has to contain a name that can be referenced from the
 * ``c:autosection`` or ``cpp:autosection`` directive.
 *
 * The name shall be from the first alphanumeric character in the comment,
 * inclusive, to the next :, ., or newline, non-inclusive. This means
 * reStructuredText hyperlink targets become reference names, like in this case,
 * but it does not have to be a hyperlink target. It could just be the first
 * sentence in the comment.
 *
 * No hyperlink targets are generated automatically. If you need to reference
 * the comment from reStructuredText, you need to add one yourself.
 */

Directive

.. c:autosection:: Hyperlink Target
 :file: autosection.c

Output

This is a generic documentation comment.

Because generic documentation comments aren’t attached to any symbols, the
comment itself has to contain a name that can be referenced from the
c:autosection or cpp:autosection directive.

The name shall be from the first alphanumeric character in the comment,
inclusive, to the next :, ., or newline, non-inclusive. This means
reStructuredText hyperlink targets become reference names, like in this case,
but it does not have to be a hyperlink target. It could just be the first
sentence in the comment.

No hyperlink targets are generated automatically. If you need to reference
the comment from reStructuredText, you need to add one yourself.

Preprocessor

Source

preprocessor.c

/**
 * Answer to the Ultimate Question of Life, The Universe, and Everything.
 */
#ifdef DEEP_THOUGHT
#define MEANING_OF_LIFE 42
#else
#error "Does not compute."
#endif

Directive

.. c:autodoc:: preprocessor.c
 :clang: -DDEEP_THOUGHT

Output

	
MEANING_OF_LIFE
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/preprocessor.c#L1]

	Answer to the Ultimate Question of Life, The Universe, and Everything.

Napoleon-style comments

Source

napoleon.c

/**
 * Custom comment transformations.
 *
 * Documentation comments can be processed using the hawkmoth-process-docstring
 * Sphinx event. You can use the built-in extensions for this, or create your
 * own.
 *
 * In this example, hawkmoth.ext.napoleon built-in extension is used to support
 * Napoleon-style documentation comments.
 *
 * Args:
 * foo: This is foo.
 * bar: This is bar.
 *
 * Return:
 * Status.
 */
int napoleon(int foo, char *bar);

Directive

.. c:autodoc:: napoleon.c
 :transform: napoleon

Output

	
int napoleon(int foo, char *bar)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/napoleon.c#L1]

	Custom comment transformations.

Documentation comments can be processed using the hawkmoth-process-docstring
Sphinx event. You can use the built-in extensions for this, or create your
own.

In this example, hawkmoth.ext.napoleon built-in extension is used to support
Napoleon-style documentation comments.

	Parameters:

	
	foo – This is foo.

	bar – This is bar.

	Returns:

	Status.

Javadoc/Doxygen-style comments

Source

javadoc.c

struct list;
enum mode;

/**
 * Custom comment transformations.
 *
 * Documentation comments can be processed using the hawkmoth-process-docstring
 * Sphinx event. You can use the built-in extensions for this, or create your
 * own.
 *
 * In this example, <tt>hawkmoth.ext.javadoc</tt> built-in extension is used to
 * support Javadoc/Doxygen-style documentation comments. You can use both \@ and
 * \\ for the commands.
 *
 * \note
 * While the most common commands and inline markup \a should work, the
 * Javadoc/Doxygen support is nowhere near complete.
 *
 * The support should be good enough for basic API documentation, including
 * things like code blocks:
 *
 * \code
 * ¯_(ツ)_/¯
 * \endcode
 *
 * And parameter and return value descriptions, and the like:
 *
 * @param list The list to frob.
 * @param[in] mode The frobnication mode.
 * @return 0 on success, non-zero error code on error.
 * @since v0.1
 */
int frob2(struct list *list, enum mode mode);

Directive

.. c:autodoc:: javadoc.c
 :transform: javadoc

Output

	
int frob2(struct list *list, enum mode mode)
[source] [https://github.com/jnikula/hawkmoth/tree/v0.17.0/test/examples/javadoc.c#L4]

	Custom comment transformations.

Documentation comments can be processed using the hawkmoth-process-docstring
Sphinx event. You can use the built-in extensions for this, or create your
own.

In this example, hawkmoth.ext.javadoc built-in extension is used to
support Javadoc/Doxygen-style documentation comments. You can use both @ and
\ for the commands.

Note

While the most common commands and inline markup should work, the
Javadoc/Doxygen support is nowhere near complete.

The support should be good enough for basic API documentation, including
things like code blocks:

¯_(ツ)_/¯

And parameter and return value descriptions, and the like:

	Parameters:

	
	list – The list to frob.

	mode – [in] The frobnication mode.

	Returns:

	0 on success, non-zero error code on error.

	Since:

	v0.1

Extending

Hawkmoth is a Sphinx extension that can be further extended with other Sphinx
extensions.

Events

See sphinx.application.Sphinx.connect() [https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx.connect] on how to
connect events.

	
hawkmoth-process-docstring

	
	
func(app, lines, transform, options)

	
	Parameters:

	
	app (sphinx.application.Sphinx [https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx]) – The Sphinx application object

	lines (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The comment being processed

	transform (str [https://docs.python.org/3/library/stdtypes.html#str]) – Transformation

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The directive options

This is similar to the autodoc-process-docstring [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#event-autodoc-process-docstring]
event in the sphinx.ext.autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#module-sphinx.ext.autodoc] extension.

The lines argument is the documentation comment, with the comment markers
removed, as a list of strings that the event handler may modify in-place.

The transform argument is the transform option of the directive being processed, defaulting to
hawkmoth_transform_default, which defaults to None. The event
handler may use this to decide what, if anything, should be done to lines.

The options argument is a dictionary with all the options given to the
directive being processed.

Note

Please note that this API is still somewhat experimental and in
development. In particular, new arguments may be added in the future.

Built-In Extensions

Hawkmoth is extensible, and ships with some built-in
extensions.

hawkmoth.ext.javadoc

This extension converts Javadoc [https://www.oracle.com/java/technologies/javase/javadoc.html] and Doxygen [https://www.doxygen.nl/] comments to reStructuredText,
using the hawkmoth-process-docstring event.

The most commonly used commands are covered, including some inline markup, using
either @ or \ command character. The support is not complete, and mainly
covers the basic API documentation needs.

Note that this does not change the comment block format, only the contents of
the comments. Only the /** ... */ format is supported.

Installation and configuration in conf.py:

extensions.append('hawkmoth.ext.javadoc')

	
hawkmoth_javadoc_transform: str [https://docs.python.org/3/library/stdtypes.html#str]

	Name of the transformation to handle. Defaults to 'javadoc'. Only convert
the comment if the transform option matches this name, otherwise do
nothing. Usually there’s no need to modify this option.

For example:

conf.py

extensions.append('hawkmoth.ext.javadoc')
hawkmoth_transform_default = 'javadoc' # Transform everything

hawkmoth_transform_default sets the default for the transform
option.

file.c

/**
 * The baznicator.
 *
 * @param foo The Foo parameter.
 * @param bar The Bar parameter.
 * @return 0 on success, non-zero error code on error.
 * @since v0.1
 */
int baz(int foo, int bar);

api.rst

.. c:autofunction:: baz
 :file: file.c

hawkmoth.ext.napoleon

This extension provides a bridge from Hawkmoth to the
sphinx.ext.napoleon [https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#module-sphinx.ext.napoleon] extension, using the
hawkmoth-process-docstring event, to support Napoleon style
documentation comments.

Installation and configuration in conf.py:

extensions.append('hawkmoth.ext.napoleon')

	
hawkmoth_napoleon_transform: str [https://docs.python.org/3/library/stdtypes.html#str]

	Name of the transformation to handle. Defaults to 'napoleon'. Only
convert the comment if the transform option matches this name, otherwise
do nothing. Usually there’s no need to modify this option.

For example:

conf.py

extensions.append('hawkmoth.ext.napoleon')
Uncomment to transform everything, example below uses :transform: option
hawkmoth_transform_default = 'napoleon'

file.c

/**
 * The baznicator.
 *
 * Args:
 * foo: The Foo parameter.
 * bar: The Bar parameter.
 *
 * Returns:
 * 0 on success, non-zero error code on error.
 */
int baz(int foo, int bar);

api.rst

.. c:autofunction:: baz
 :file: file.c
 :transform: napoleon

hawkmoth.ext.transformations

This extension handles the cautodoc_transformations feature, using
the hawkmoth-process-docstring event.

Note

Going forward, it’s recommended to handle transformations using the event
directly instead of cautodoc_transformations. This built-in
extension provides backward compatibility for the functionality.

For now, this extension is loaded by default, and the installation step below
is not strictly necessary. This will change in the future.

Installation and configuration in conf.py:

extensions.append('hawkmoth.ext.transformations')

	
cautodoc_transformations: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Transformation functions for the c:autodoc directive transform
option. This is a dictionary that maps names to functions. The names can be
used in the directive transform option. The functions are expected to
take a (multi-line) comment string as a parameter, and return the transformed
string. This can be used to perform custom conversions of the comments,
including, but not limited to, Javadoc-style compat conversions.

The special key None, if present, is used to convert everything, unless
overridden in the directive transform option. The special value None
means no transformation is to be done.

For example, this configuration would transform everything using
default_transform function by default, unless overridden in the directive
transform option with javadoc or none. The former would use
javadoc_transform function, and the latter would bypass transform
altogether.

cautodoc_transformations = {
 None: default_transform,
 'javadoc': javadoc_transform,
 'none': None,
}

The example below shows how to use Hawkmoth’s existing compat functions in
conf.py.

from hawkmoth.util import doccompat
cautodoc_transformations = {
 'javadoc-basic': doccompat.javadoc,
 'javadoc-liberal': doccompat.javadoc_liberal,
 'kernel-doc': doccompat.kerneldoc,
}

Tips and Tricks

Here is a small collection of tips and tricks on how to use Sphinx and Hawkmoth
for documenting C and C++ code.

Function Parameter Direction

Sphinx does not have a dedicated way of expressing the parameter direction
similar to Doxygen @param[dir] [https://www.doxygen.nl/manual/commands.html#cmdparam] command. One approach to emulate this is to
define reStructuredText replacement texts [https://docutils.sourceforge.io/docs/ref/rst/directives.html#replacement-text], and use them.

For example:

conf.py

rst_prolog = '''
.. |in| replace:: **[in]**
.. |out| replace:: **[out]**
.. |in,out| replace:: **[in,out]**
'''

source code

/**
 * :param foo: |in| Foo parameter.
 */
void bar(char *foo);

By using replacement text, the direction stands out in the source code, you get
warnings for typos, and you can modify the appearance across documentation in
one place. Instead of **[in]**, you might use ⇒, or whatever you prefer.

Including Source Code Blocks

Doxygen has the @include [https://www.doxygen.nl/manual/commands.html#cmdinclude] and @snippet [https://www.doxygen.nl/manual/commands.html#cmdsnippet] commands to include a source file or
a fragment of one into documentation as a block of code.

The Sphinx alternative is literalinclude [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-literalinclude]. The
:start-after: and :end-before: options can be used to mimic the
block_id of @snippet, but there’s plenty more.

.. literalinclude:: path/to/source.c
 :start-after: Adding a resource
 :end-before: Adding a resource

Using sphinx-autobuild with Hawkmoth

sphinx-autobuild [https://github.com/executablebooks/sphinx-autobuild] is a handy tool to automatically rebuild Sphinx
documentation when you modify the .rst files, with live-reload in the
browser.

It’s possible to have it auto rebuild and live-reload source documentation on
source code changes by adding --watch <source root> option to
sphinx-autobuild, where <source root> matches hawkmoth_root.

Troubleshooting

Things not working? Here are some things to try isolate the problem.

Use the parser directly

Hawkmoth comes with a command-line debug tool to extract the documentation
comments from source without Sphinx. This can be useful in figuring out if the
problem is in the parser or in the Sphinx extension.

hawkmoth path/to/file.c

See the help for command-line options:

hawkmoth --help

Get verbose output from Sphinx

Pass the -v option to sphinx-build to get more verbose output, and see
if anything stands out.

sphinx-build -v SOURCEDIR OUTPUTDIR

or

make SPHINXOPTS=-v html

You can also use -vv for even more verbose output.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | L
 | M
 | N
 | O
 | P
 | T
 | V

A

 	
 	array (C var)

 	
 	ARRAY_SIZE (C macro)

B

 	
 	bar (C enum)

 	bar.E1 (C enumerator)

 	
 	bar.E2 (C enumerator)

 	baz (C function)

C

 	
 	
 :clang: (directive option)

 	cpp:autodoc (directive)

 	c:autodoc (directive)

 	c:autoenum (directive)

 	c:autofunction (directive)

 	c:automacro (directive)

 	c:autosection (directive)

 	c:autostruct (directive)

 	c:autotype (directive)

 	c:autounion (directive)

 	c:autovar (directive)

 	cautodoc_clang (built-in variable)

 	cautodoc_root (built-in variable)

 	cautodoc_transformations (built-in variable)

 	Circle (C++ class)

 	Circle::area (C++ function)

 	
 	Circle::Circle (C++ function)

 	Circle::radius (C++ member)

 	Circle::~Circle (C++ function)

 	cpp:autoclass (directive)

 	cpp:autodoc (directive)

 	:clang: (directive option)

 	:transform: (directive option)

 	cpp:autoenum (directive)

 	cpp:autofunction (directive)

 	cpp:automacro (directive)

 	cpp:autosection (directive)

 	cpp:autostruct (directive)

 	:members: (directive option)

 	cpp:autotype (directive)

 	cpp:autounion (directive)

 	cpp:autovar (directive)

 	:file: (directive option)

D

 	
 	DIE (C macro)

E

 	
 	entries (C var)

 	
 environment variable

 	python:PYTHONPATH

 	
 	ERROR (C macro)

 	
 event

 	hawkmoth-process-docstring

F

 	
 	
 :file: (directive option)

 	cpp:autovar (directive)

 	FAILURE (C macro)

 	foo (C struct)

 	
 	foo.m1 (C member)

 	foo.m2 (C member)

 	frob (C function)

 	frob2 (C function)

 	frobo (C function)

H

 	
 	
 hawkmoth-process-docstring

 	event

 	hawkmoth_clang (built-in variable)

 	hawkmoth_javadoc_transform (built-in variable)

 	
 	hawkmoth_napoleon_transform (built-in variable)

 	hawkmoth_root (built-in variable)

 	hawkmoth_source_uri (built-in variable)

 	hawkmoth_transform_default (built-in variable)

L

 	
 	list (C struct)

 	list.data (C member)

 	
 	list.next (C member)

 	list_data_t (C type)

M

 	
 	
 :members: (directive option)

 	cpp:autostruct (directive)

 	MEANING_OF_LIFE (C macro)

 	
 	meaning_of_life (C var)

 	mode (C enum)

 	mode.MODE_PRIMARY (C enumerator)

 	mode.MODE_SECONDARY (C enumerator)

N

 	
 	namespace_examples_autofunction.frob (C function)

 	namespace_examples_automacro.DIE (C macro)

 	namespace_examples_autostruct.list (C struct)

 	
 	namespace_examples_autostruct.list.data (C member)

 	namespace_examples_autostruct.list.next (C member)

 	namespace_examples_autovar.meaning_of_life (C var)

 	napoleon (C function)

O

 	
 	onion (C union)

 	onion.red (C member)

 	
 	onion.white (C member)

 	onion.yellow (C member)

P

 	
 	python:PYTHONPATH

T

 	
 	
 :transform: (directive option)

 	cpp:autodoc (directive)

V

 	
 	VARIADIC_MACRO (C macro)

 nav.xhtml

 Table of Contents

 		
 Hawkmoth – Sphinx Autodoc for C and C++

 		
 Installation

 		
 Clang Distro Install

 		
 Clang Python Bindings

 		
 Virtual Environment

 		
 Read the Docs

 		
 Autodoc Extension

 		
 Usage

 		
 Configuration

 		
 hawkmoth_root

 		
 hawkmoth_transform_default

 		
 hawkmoth_clang

 		
 hawkmoth_source_uri

 		
 cautodoc_root

 		
 cautodoc_clang

 		
 Directives

 		
 Source Files

 		
 .. c:autodoc::

 		
 .. cpp:autodoc::

 		
 Variables, Types, Macros, and Functions

 		
 .. c:autovar::

 		
 .. cpp:autovar::

 		
 .. c:autotype::

 		
 .. cpp:autotype::

 		
 .. c:automacro::

 		
 .. cpp:automacro::

 		
 .. c:autofunction::

 		
 .. cpp:autofunction::

 		
 Structures, Classes, Unions, and Enumerations

 		
 .. c:autostruct::

 		
 .. cpp:autostruct::

 		
 .. cpp:autoclass::

 		
 .. c:autounion::

 		
 .. cpp:autounion::

 		
 .. c:autoenum::

 		
 .. cpp:autoenum::

 		
 Generic Documentation Sections

 		
 .. c:autosection::

 		
 .. cpp:autosection::

 		
 Syntax

 		
 Documentation Comments

 		
 Info Field Lists

 		
 Extending the Syntax

 		
 Cross-Referencing C and C++ Constructs

 		
 Examples

 		
 Overview

 		
 Source

 		
 Directive

 		
 Output

 		
 Variable

 		
 Source

 		
 Directive

 		
 Output

 		
 Directive

 		
 Output

 		
 Typedef

 		
 Source

 		
 Directive

 		
 Output

 		
 Macro

 		
 Source

 		
 Directive

 		
 Output

 		
 Directive

 		
 Output

 		
 Function

 		
 Source

 		
 Directive

 		
 Output

 		
 Directive

 		
 Output

 		
 Struct

 		
 Source

 		
 Directive

 		
 Output

 		
 Directive

 		
 Output

 		
 Class

 		
 Source

 		
 Directive

 		
 Output

 		
 Union

 		
 Source

 		
 Directive

 		
 Output

 		
 Enum

 		
 Source

 		
 Directive

 		
 Output

 		
 Generic Documentation Section

 		
 Source

 		
 Directive

 		
 Output

 		
 Preprocessor

 		
 Source

 		
 Directive

 		
 Output

 		
 Napoleon-style comments

 		
 Source

 		
 Directive

 		
 Output

 		
 Javadoc/Doxygen-style comments

 		
 Source

 		
 Directive

 		
 Output

 		
 Extending

 		
 Events

 		
 Built-In Extensions

 		
 hawkmoth.ext.javadoc

 		
 hawkmoth_javadoc_transform

 		
 hawkmoth.ext.napoleon

 		
 hawkmoth_napoleon_transform

 		
 hawkmoth.ext.transformations

 		
 cautodoc_transformations

 		
 Tips and Tricks

 		
 Function Parameter Direction

 		
 Including Source Code Blocks

 		
 Using sphinx-autobuild with Hawkmoth

 		
 Troubleshooting

 		
 Use the parser directly

 		
 Get verbose output from Sphinx

_static/file.png

_static/minus.png

_static/plus.png

